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Abstract

The problem of the genesis of oscillatory phenomena in a continuous distribution of excitatory
and inhibitory neurons is addressed by introducing a neural  eld model of the reaction-di4usion
type. The presence of the di4usive term, combined with the non-linear point interactions, allows
the system to exhibit cooperative activation properties in both space and time. A detailed anal-
ysis of the resulting oscillatory behaviour of the model evidences its capability of generating
stimulus-induced spatio-temporal coherence  elds, similar to the ones experimentally observed
in the mammalian visual cortex. The perceptual role of the related association  elds, as 5exible
media to establish feature association in the visual space, is discussed.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past few years, a large amount of data have been accumulated which
demonstrate that coherent perceptual states are associated with collective activities
of large ensembles of neurons in cortical areas [2,30,36,46,51,62]. Speci cally, it
has been observed that visual stimulations drive synchronous oscillatory behaviours
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over a range of spatial scales, from single unit responses to visually evoked poten-
tials [94,78,88]. These stimulus-dependent neuronal oscillations occur mainly in the
�-frequency band (20–70 Hz), and can synchronize across separate cortical locations
with a precision in the ms range and with near-zero phase-lag, depending on the
con guration of the visual stimulus [19,22,32,38–40,53]. From this perspective, phase
relationships of neuronal oscillations may be used to de ne cortical assemblies, i.e.,
clusters of spatially distributed neuronal groups that represent segments of a visual
scene. On the basis of this body of evidence, synchronous oscillatory cortical responses
have been indicated as the physiological substrate for a mechanism of feature binding
[19,21,23,33,76,85,90].
Several models have been proposed to study the emergence of synchronous oscil-

lations in networks of reciprocally coupled neural oscillators [1,5,14,20,41,52,54,55,75
81,91,94]. (for a review, see [25,83]). In all these models, synchronization/
desynchronization behaviours are achieved by couplings among oscillating units con-
sidered as interacting discretely with one another.
In this paper, our aim is to investigate the joint spatio-temporal properties of the

sensory-evoked activity in cortical networks. Toward this end, coupling weights among
oscillators are modelled as a di4usion process: any cell activates, through a spreading-out
process, nearby cells in proportion to its own level of activation. The neural  eld model
associated with this choice of the coupling weights allows us to investigate spatial
distributions of coherence and synchrony as continuum properties of large  elds of
interconnected cells. Desynchronization behaviour in our model is introduced by an
appropriate long-range inhibitory coupling. In this way, we can analyse the role of
horizontal interactions in the establishment of ordered oscillatory behaviours and in
the control of the spatio-temporal distribution of coherence. We show that the result-
ing system exhibits a stimulus-dependent assembly formation of oscillatory responses,
similar to those found in the physiological experiments on slow-wave  eld potentials
[14,18].

2. Cortical model

Visual cortex is a densely packed volume of neurons in which intracortical con-
nections greatly exceed a4erent projections [9]. This implies that the collective be-
haviour of neural assemblies depends on complex synaptic and dendritic processes of
large cortical networks; therefore, to determine the degree of relevant detail is a hard
problem. Given the huge number of cells involved in such networks, macroscopic ap-
proaches are frequently adopted to o4er simpler insights into the basic physical mech-
anisms of cortical behaviour, thus avoiding anatomical details as well as physiological
complexity.
Following the continuum approach pioneered in the works by Wilson and

Cowan [96], Freeman [28], Amari [3] and Amari [4], we considered a one-dimensional
(1-D) neural  eld model of striate visual cortex characterized by two interacting
excitatory and inhibitory populations, organized as layered continua. The neural
 eld dynamics is governed by the following pair of coupled, delayed non-linear
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di4usion equations:
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e(x; t)− b[e(x − d; t) + e(x + d; t)]

−wieF[i(x; t − �ie)] + s(x; t);
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i(x; t) =−�ii(x; t) + weiF[e(x; t − �ei)]; (1)

where e(x; t) and i(x; t) are, respectively, the excitatory and inhibitory population ac-
tivities in space (x) and time (t), and s(x; t) is the driving input. The two populations
excite and inhibit each other through non-linear point interactions with time-delays
�ei, �ie. Such delays are due to delays in transmission of information among di4erent
parts of the system, e.g., through synaptic transmission and  nite conduction velocities
of dendrites and axons. In order to keep minimal conditions for generating faithful
(cortical-like) spatio-temporal behaviours, both intrinsic properties and the connection
architecture were reduced to the simplest cases. Punctual parameters characterize the
basic oscillatory element: �0 is the membrane time constant, �e (�i) is the damping
constant, wei (wie) is the coupling weight between populations, and

F(u) =
1

exp[�(�− u)] + 1

is a static sigmoidal function with slope � and threshold �, limiting the excitatory and
inhibitory interaction mechanisms. The spatial 5ow of the activity across the neural
 eld concerns the excitatory population, has a linear behaviour, and is controlled by
the 7eld parameters D and b, related to di4usion coupling and lateral inhibitory inter-
action, respectively. The di4usive term has to be related to the bioelectrical phenomena
occurring in the extracellular space, taken to be electrically equivalent to an extended
homogeneous conductive medium 1 [63,67,68], characterized in Eq. (1) by the dif-
fusive parameter D, representing the square of the di4usion length. The extracellular
current 5ow can be adequately described by a Poisson’s partial di4erential equation re-
lating transmembrane currents to  eld potentials (e.g., excitatory activity e(x; t)). The
inhibitory term accounts for the presence of speci c interactions (mediated by synaptic
processes) among nearby neurons, at a distance ±d. It is worth noting that the e4ects
of this lateral inhibition are also in5uenced by the di4usion processes occurring in the
extracellular conductive medium (a more exaustive treatment of this issue is presented
in the Discussion). As well as non-linear point interactions are fundamental in priming
cooperative processes, the spreading of activation over the cortical layers plays a key
role in the long-distance transfer of information across the neural  eld and in in5u-
encing the spatio-temporal behaviour of the resulting cell assemblies. A summary of

1 The extracellular current 5ow can be adequately described by a Poisson’s partial di4erential equation
relating transmembrane currents to  eld potentials:

∇ · D(∇K) = �∇ · D(∇K) =−�Im =−s;

where K is the  eld potential (essentially dominated by the excitatory contributions [67], e.g., e(x; t)); Im
is the volume source current density, D can be considered as a conductivity tensor, and � is an appropriate
dimensional [m3�] normalizing parameter.
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Table 1
Typical values of the anatomical and physiological parameters used in the numerical solutions of Eq. (1).

Symbol De nition Typical value Range Units

Population variables
e(x; t) Excitatory activity — ±4 102 �V
i(x; t) Inhibitory activity — 0− 4 102 �V
s(x; t) External stimulus input — 0− 4 102 �V

Punctual parameters
� Slope of the sigmoidal function 6 6 10−2 �V−1

� Threshold of the sigmoidal function 1 1 102 �V
�e, �i Damping constant 1 1 –
�0 Membrane time constant 5 5 ms
�ie, �ei Coupling delays 5 0.5–5.0 ms
wie, wei Coupling weights between populations 4.4 1–10 102 �V

Field parameters
b Lateral inhibition strength 0.045 0–0.7 —
D Di4usion parameter 0:06�20 (10−3 − 0:5)�20 —
d Lateral inhibition distance 0:5�0 0:5�0 —
�0 Spatial scale 540 540 �m

the punctual and  eld parameters used in the model, together with their typical values
used in the simulations, is presented in Table 1.
To characterize the behaviour of the system, we analyse its response to two types

of stimuli: transient and sustained. Eq. (1) are solved numerically by a modi ed  nite
di4erence method proposed by Dilao and Sainhas [16] for numerical integration of
di4usion and reaction-di4usion equations; boundary conditions are periodic in all sim-
ulations reported. It is worth noting that, if we set D=0 and b=0, Eq. (1) reminds one
of the equations describing the behaviour of the KOonig and Schillen [52] basic oscil-
latory element, sharing the property of stimulus-dependent transition between a stable
 xed point (i.e., a non-oscillatory state) and a limit cycle oscillation. The presence of a
di4usion coupling, although, gives the system a joint spatio-temporal character, which
is the main novelty of our model. Indeed, the di4usion component allows a weighted
averaging of the input signal s(x; t) over a region of a certain extent (cf. the receptive
 eld), while the non-linear reaction components provide a 5exible medium on which
to base cooperative computation.

Transient response: Fig. 1 (top) shows the spatio-temporal responses of the cortical
 eld to an impulsive activation in space and time (a point stimulation lasting 0:5�0 �
2:5 ms), for di4erent values of the di4usion parameter D and of the lateral inhibition
strength b. The neural  eld reacts with a central excitation surrounded by inhibitory
regions whose amplitude can be controlled by the inhibition strength b. The inhibitory
action is also in5uenced by di4usion processes attenuating the e4ect of b as the di4usion
parameter D increases. The time course of the transient response may have a biphasic
or triphasic character, still depending on the joint action of D and b. The e4ects of
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Fig. 1. System responses to a spatio-temporal impulse stimulus (top) and to a continuous time step activation
of a point in space (bottom). Bright and dark greys represent excitatory and inhibitory activities, respectively.
Our standard set of parameters is �0 = 5 ms, � ≡ �e = �i = 1, w ≡ wei = wie = 6:6, � ≡ �ei = �ie = 2:5 ms,
s(·; t) = const = A = 12, � = 6:0, � = 1:0, d = 0:5�0, with exceptions where noted. (A–C): E4ects of the
variations of the intrinsic parameters on the temporal responses, with respect to the central spatial position
of the spatio-temporal maps pointed out by the black frames. (A) E4ect of varying the delay time �. Dashed,
�= 0:5 ms; solid, �= 2 ms; dotted, �= 5 ms. (B) E4ect of varying the input level A. Dashed, A= 3; solid,
A=15; dotted, A=32. (C) E4ect of varying the coupling strength w. Dashed, w=1:1; solid, w=6:6; dotted,
w = 9:9.
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varying the point parameters � and w, and the input level s(x; t) on the temporal
response are shown in the plots (A, B, C), for  xed values of D=0:06�20 and b=0:67.
The coupling strength w strongly in5uences the time course of the transient response
(C), whereas the time delay � a4ects the duration of the complete response pattern,
but not its time course (A). Variations of the input level slightly a4ects the shape of
the transient response (B).

Sustained response: The spatio-temporal responses obtained by stimulating a point
in space with a step input in time are shown in Fig. 1 (bottom). A sustained input
stimulation yields, for a proper parameter set, stable oscillatory behaviours. The de-
pendences of the oscillatory behaviour of our system on the input amplitude s(x; t), on
the time delay � and on the coupling weights w between the populations are similar to
the ones obtained by KOonig and Schillen’s model (cf. the plots in A, B, C with their
Fig. 2 in [52]). In particular, depending on the level of input activity, the system trans-
fers between a non-oscillatory and an oscillatory state: with a too low input, as well
as with an excess of activation, the system relaxes to a stable  xed point determined
by the other point parameters.
The pattern of excitatory activity for transient stimulations points out a spatio-

temporal distribution that, for a linear system, could be representative of a receptive
 eld. 2 In the case of a non-linear system, this distribution means that each loca-
tion in the cortical layer weights the “sensorial” input in space and time, even though
non-linearly. Considering the spatial integration properties, as mediated by the di4usion
processes, it is interesting to investigate the cooperative response to multiple activation
sites in relation to the formation of coherently oscillating assemblies (see Section 3).
Toward this end, we introduce, for multiple sites in space, volleys of a4erent inputs,
characterized by short periods (bursts) of continuous activity at uniformly distributed
sparse sites of activation in space. Formally, for each spatial location in a given region
x16 x6 x2, the input signal s(x; t) is a stochastic process taking the value A or 0 with
probabilities p and (1 − p), respectively, over each interval nT6 t ¡ (n + 1)T , with
T = k�0 (typically k = 2):

∀x∈ [x1; x2];

∀n∈ [0;+∞);
Pr{s(x; t) = A; nT6 t ¡ (n+ 1)T}= p;

Pr{s(x; t) = 0; nT6 t ¡ (n+ 1)T}= 1− p:
(2)

If we increase the activation probability p, the temporal frequency of the volley
increases, as well as the spatial density of the activation sites.

2 The time course of the excitation is considerably shorter, as compared with the temporal properties of
visual receptive  elds of local intracortical potentials measured by Lohmann et al. [60]. Such di4erences
are due to the fact that our large scale model of cortical activity describes collective properties from the
beginning. In real physiological conditions, collective behaviours can be evidenced when a large number
of cells are excited by a spatially extended visual stimulation and, therefore, impulse stimulations cannot
activate collective responses.
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Fig. 2. Stimulus-dependent responses obtained by stochastic input activation (see text). Upper panels:
greyscale spatio-temporal maps of the input con guration and of the corresponding cortical responses. Bright
and dark greys represent excitatory and inhibitory activities, respectively. After 500 ms, the onset of a spe-
ci c stimulus that lasts 500 ms more increases the activation probability in the spatial domain [x1; x2]. Under
conditions of suRcient activation probability p, coherent spatio-temporal oscillations emerge in a large spa-
tial region. Lower panels: LFP signal courses for the 20 nearby spatial locations pointed out in the leftmost
spatio-temporal map response. The lowermost  gures represent the corresponding average power spectra
(PSDs) and the normalized autocorrelation functions (ACFs) for the 20 single response epochs delimited by
dotted lines. (a) 400 ms epochs before speci c stimulation (p=0:1) and (b) 400 ms epochs during speci c
stimulation (p¿ 0:1). Note the sharp peak in the PSD and the Gabor-like shape of the ACF obtained during
speci c stimulation. The dashed lines in the ACF graphs correspond to the average autocorrelations of the
input signals.

3. Results

The spatio-temporal dynamics of a 1-D neural  eld driven by  nite stochastic point
sources is studied by numerical simulations. The system parameters used in the fol-
lowing were chosen to produce desirables slow-wave forms resembling LFPs recorded
extracellularly in the visual cortices of the cat and the monkey. Our standard set of
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parameters is: �e = �i = 1:0, �0 = 5 ms, wie = wei = 4:4, �ie = �ei = 1:5 ms, D= 0:06�20,
b= 0:045, d= 0:5�0, A= 4, � = 6:0, �= 1:0.

3.1. Emergence of oscillatory assemblies

Numerical simulations proved that a rapid successive activation of multiple cortical
sites produces a cooperative reaction of the di4usion layer. Such reaction results, for a
suRciently high activation probability p, in the formation of coherent oscillatory states.
Speci cally, when the increment of the activation probability p occurs over contiguous
cortical sites, a stimulus-speci c response is observed as a localized oscillatory assem-
bly, if the size of such a group of neurons is larger than the extent of the di4usion
process.
To point out the stimulus-dependent property of these assemblies, we stimulated the

excitatory cortical layer by both speci c and non-speci c inputs. Non-speci c activation
(evoking a spontaneous activity) is provided by a stochastic input s(x; t), as de ned
in Eq. (2), with low activation probability (p = 0:1), initialized from di4erent seed
values at each cortical location x. The onset of a speci c stimulus is associated with
an increment of the activation probability in the spatial domain [x1; x2]. The assembly
formation resulting for this stimulus con guration is illustrated in Fig. 2, for increasing
values of the activation probability p. Speci c stimulation augments the activity of
topologically continuous cortical locations and, under conditions of suRcient excita-
tory drive, local oscillatory assemblies emerge. The resulting oscillations observed in
the excitatory signal e(x; t) closely resemble the time courses of real LFPs recorded in
visual cortex [18,78]. The cortical layer exhibits oscillatory activity only at locations to
which a suRcient stimulus is applied, and the stimulus response, therefore, need not be
segregated from background oscillations. This agrees with experimental evidence of the
non-oscillatory character of spontaneous neuronal activity [39]. Moreover, it is worth
noting that, after stimulus onset, coherent oscillations emerge rapidly, (approximately in
one cycle or less), as well as the transition back to a more stochastic (non-oscillatory)
state, after stimulus o4set [18]. The cooperative phenomena generating the oscillatory
activity remain spatially localized in relation with the spatial extent of the activation
sites. For intermediate values of p, there form momentarily existing assemblies (is-
lands) of activity, whereas, for higher values of activation, coherent spatio-temporal
oscillations occur over the entire spatial extent of the input activation. The properties
of the spatio-temporal distribution of coherent oscillatory activity will be discussed
in the next section. The amplitude level of the activation associated with each burst,
jointly with its lasting period T , plays a key role in priming oscillations. Indeed, an
excessive increase in the activation level, for a  xed p, leads the system back to a
stationary, non-oscillatory state (not shown, but cf. Fig. 1B).
To quantitatively characterize the temporal behaviour of the modelled LFP signals,

we computed the average power spectral densities (PSDs) and the average autocor-
relation functions (ACFs) or autocorrelograms of the LFP signals, calculated over
400 ms and averaged over 20 response epochs of nearby cortical locations (see Fig. 2).
The power spectra and the autocorrelograms, as well as the LFP signals, closely
approximate experimental  ndings. The emergence of oscillatory activity is clearly
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Fig. 3. LFP tracks and the corresponding power spectra obtained at a single spatial location for di4erent
combinations of the  eld parameters D and b. The thick line on the temporal axis indicates the length of
the input stimulation starting at 250 ms, with activation probability p = 0:8.

stimulus-dependent: in condition of speci c stimulation, the sharp peak in the spectral
power density reveals a “generative” oscillatory activity at about 40 Hz, in contrast to
the broad-band frequency spectra associated with amplitude 5uctuations of the LFPs in
the range 1–10 Hz, in the absence of a speci c stimulation. Similarly, the ACFs exhibit
a Gabor-like shape indicating a rhythmic activity (cf. [18,22]). The dashed lines in the
graphs correspond to the average autocorrelograms of the input signal. Note that such
autocorrelograms are aperiodic, thus indicating that the input is not driving the oscil-
latory behaviour by itself. This agrees with the experimental evidence that neuronal
oscillations result from intracortical mechanisms and are not driven by oscillatory (i.e.,
thalamic) input [22,39].
To analyse the e4ects of the  eld parameters on the formation of the rhythmic

oscillatory activity, we systematically varied both the di4usion parameter D that governs
the spread of activity in the neural  eld and the strength of lateral inhibition b, while
keeping  xed the distance from which lateral inhibition occurs (d = 0:5�0). Fig. 3
shows that a certain amount of di4usion is necessary to obtain an oscillatory activation,
and that such behaviour can be strongly in5uenced by lateral inhibitory processes. In
particular, according to the amount of di4usion, the e4ects of lateral inhibition can be
opposite: a low level of inhibition is not suRcient to drive oscillations for small values
of D, whereas, for higher values of D, an increase in inhibition can prevent rhythmic
activity. Although oscillatory behaviours were obtained for a wide range of variations
of the parameters, the steadiest behaviours (in the whole range of the considered values
of b) were observed for 0:01�206D6 0:10�20. Therefore, in the subsequent analysis
we shall restrict the variations of D to this range.



420 S.P. Sabatini et al. / Neurocomputing 57 (2004) 411–433

3.2. Spatio-temporal distribution of coherence

The presence of a di4usive medium operates so that the oscillatory activities elicited,
through speci c stimulations, at di4erent locations of the cortical layer, turn out to be
intrinsically coupled by di4usion, thus yielding large-scale areas of coherent activity. In
this section, we analyse the spatio-temporal patterns of the stimulus-induced oscillations
by comparing the modelled LFP signals as a function of time and distance, to discuss
the role of di4usion and lateral inhibition in the synchronization and desynchronization
processes of the oscillatory activity and to point out the spatio-temporal properties of
the resulting coherence 7elds. Fig. 4 shows three panels representing di4erent system
responses to the same stimulation; such responses were obtained by varying the strength
of lateral inhibition b at a  xed value of di4usion D=0:05�20. The spatio-temporal maps,
shown in the middle of each panel, o4er compact representations of the spatio-temporal
dynamics of the LFPs, pointing out a certain degree of variability of coherence in
both space and time. Speci cally, synchronous events appear as vertical straight bands,
whereas oblique bands stand for propagating waves or phase-shifts. The corresponding
LFP traces are displayed in the insets, together with the responses obtained for lower
(D = 0:01�20) and higher (D = 0:10�20) values of di4usion. The spatial extent of the
coherence  elds depends on the intensity of lateral inhibition and on the degree of
di4usion of the neural  eld. In particular, an increase in lateral inhibition disrupts
spatio-temporal coherence, thus providing an intrinsic mechanism for desynchronizing
cortical activity. Low values of di4usion facilitate the formation of high incoherence
states, whereas high values of di4usion oppose desynchronization, thus providing an
intrinsic synchronization mechanism.
To quantitatively characterize the spatio-temporal distribution of coherence, we com-

puted the normalized temporal cross-correlations of LFP signals at di4erent cortical
distances. A measure of spatial coherence is obtained by representing the peaks of the
cross-correlations as a function of distance. This quantity provides a closely related
measure of spatial correlation (see Fig. 4). In general, the average spatial coherence
decreases with cortical distance as a consequence of the increasing phase jitter with dis-
tance [15,18,31]. Spatial correlations display marked di4erences as the amount of lateral
inhibition increases. For low values of b, LFPs display a remarkable spatio-temporal
coherence, as indicated by the high values of spatial correlations for large distances,
in contrast to the steeper decline of spatial correlations for intermediate values of inhi-
bition, up to even an anti-correlation for higher values of inhibition. It is worth noting
that, for high levels of inhibition, the coherence  eld shows abrupt transitions, result-
ing in small regions (patches) characterized by coherence states (cf. [45]), which are
mutually correlated or anti-correlated in an alternate way (cf. the chequered pattern
in the lowermost spatio-temporal map in Fig. 4, for b = 0:67). The patches have a
typical length scale that is of the order of the range of the di4usion length (D). The
time-dependence of coherence was investigated in greater detail by analyzing the evo-
lution of local correlations as a function of time. More speci cally, the maximum peak
of the cross-correlations between two cortical sites at  xed distances were evaluated
by using successive time windows (cf. [15]). The maximal correlations as a function
of time are displayed in the bottom-left  gures of each panel in Fig. 4. These re-
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sults indicate that the coherence of cooperative output oscillations present a certain
degree of variability (even within short time windows), which becomes more evident
for relatively high values of inhibition and large distances (see also Fig. 5D).

3.3. Association 7elds

The coherence  elds of the oscillatory assemblies, like the ones analysed in the pre-
vious section, when projected in the visual space, have been termed association 7elds
[20] or context 7elds [70], in relation to their possible role in feature association. More
speci cally, an association  eld represents the area in the visual space where appropri-
ate local stimulus features can initiate synchronizations in the oscillatory activities of
the corresponding assembly. The spatial extent of the association  elds is related to the
spatial extent of average coherence, and depends on the divergent intra-cortical connec-
tivity, which, in our model, is mediated by di4usion (see Section 3.2). The mechanism
underlying feature association requires that neighbouring portions of the same visual
object should cause the synchronized oscillatory activities of the neurons that represent
those portions. We tested this functionality by measuring, over large distances on the
cortical layer, the synchronization properties of the oscillatory activity resulting from
spatially extensive (1-D) stimulations. The neural  eld was con gured with D=0:05�20
and low lateral inhibition (b = 10−3), and the test stimuli s(x; t) were either discon-
nected double bar segments or a long single bar segment, homogeneously characterized
by p= 0:9 in a background with p= 0:1. The system showed temporal coherent rela-
tions similar to the physiological data [22] and the responses obtained by other models
[52] (see Fig. 5). We computed cross-correlations within and between stimulus seg-
ments by varying their gap distance; the resulting cross-correlograms are shown in
Figs. 5B and C. As demonstrated in Section 3.2, within every single bar segment os-
cillatory activity is tightly coupled and cross-correlations show zero phase-lag, whereas
cross-correlations between segments diminish more as the gap distance increases. In
the case of a large gap distance, exceeding the spatial extent of the association  elds,
synchronization is restricted to the area of each bar segment. Between the two seg-
ments, the oscillatory activities related to each other are highly incoherent, resulting
in a minimum average cross-correlation. As the gap distance between the two segments

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 4. Spatio-temporal distributions of coherence for di4erent values of lateral inhibition. Each panel rep-
resents the spatio-temporal behaviour of the LFPs, together with their correlation properties in space and
time. To point out temporal variations of coherence, spatial correlations have been evaluated in consecutive
time windows of  xed durations, for a total prolonged system stimulation of 2 s. For the sake of clarity,
only 375 ms durations of the signal responses are shown. In this case, the time was sliced into consecutive
time windows of 100 ms, and cross-correlations were computed within each window. The resulting spatial
correlations are represented as grey lines, whereas the thick black lines represent the average curves. For
low values of inhibition, oscillations are locally coherent in space and time, whereas, for high values of
inhibition, fast desynchronizations occur, thus resulting in a steep decay of the spatial correlations. The
time-dependent correlations of the LFP signals are pointed out in the lowermost left  gures of each panel.
For representation reasons, we adopted a time scale that is consistent with the one used for the LFP signal
representation, though a larger time scale should be used to better appreciate its variability.
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Fig. 5. E4ects of stimulus extension and continuity on synchronous (coherent) oscillations. (A) External input
stimulation to the cortical  eld model: two stimulus segments separated by $ = 0:40 and 0:15 mm, and a
continuous extended stimulation. (B) Normalized cross-correlations between stimulus segments of 21 epochs
of 70 ms each. (C) Mean normalized cross-correlations within (dashed lines) and between (solid lines)
stimulus segments. High cross-correlations between stimulus segments correspond to continuity of stimulus
properties, in agreement with experimental observations [39,22]. (D) Local  eld potential oscillations of
the simulated cortical  eld. Segment responses are superimposed to point out synchronization properties.
Black traces represent oscillatory responses to the left stimulus segment, whereas grey traces represent
oscillatory responses to the right stimulus segment. The lowermost  gure shows the responses to the two
widely separated stimuli ($=0:40 mm), when additional long-range interconnections are superimposed, thus
pointing out their role in establishing synchronization among neurons belonging to di4erent columns.
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decreases, a coupling occurs up to a complete binding (i.e., synchronization) across
the entire stimulated area, when the two bar segments form only one continuous long
bar. To avoid accidental long-range synchronizations, we took care of using spatially
uncorrelated triggering stimulations. Alternatively, random noise can be applied to in-
troduce additional 5uctuations in oscillatory activities and to break accidental periodic
phase-locking [52,81].
To further investigate the potentialities of our cortical  eld model as a powerful

medium for feature association, we simulated the responses to two bar segments sep-
arated by a large distance when additional long-range excitatory interconnections are
superimposed. Such interactions act on the excitatory layer, like those of lateral inhibi-
tion, but at a longer distance and with a lower strength. As shown in the right column
of Fig. 5, the presence of long-range interconnections results in strong coupling (i.e.,
association) even between stimuli that are widely apart in the visual space, thus ev-
idencing the possibility of establishing synchronization among distant cortical regions
through direct long-range interconnections that couple neurons with non-overlapping
receptive  elds. In the future, this could have important implications, if we assume
a two-dimensional (2-D) architecture in which neurons selective to di4erent parame-
ters are grouped into columns, and a long-range interconnection web that links columns
with similar properties, by analogy to cortical feature maps of the primary visual cortex
(see Discussion).

4. Discussion

In this paper, we have aimed to model the joint spatio-temporal oscillatory dynamics
observed in the visual cortices [18,74,78,88], through the behaviour of a  eld oscil-
latory system. Toward this end, we have introduced a second-order delayed partial
di4erential equation characterized by a non-linear point interaction similar to KOonig
and Schillen’s basic oscillatory element [52] and by a recurrent linear coupling, mod-
elled by an excitatory di4usion term and lateral inhibition. The balance between the
excitatory and inhibitory in5uences can be controlled by acting jointly on the two  eld
parameters b and D (cf. Eq. (1)). Lateral inhibitory processes are, indeed, primed by
values of b in its upper range, and their e4ects are spread over the neural  eld by
di4usive processes, controlled by D. The resulting system behaves as a network of
di4usion-coupled oscillators.
The major novelty of our model is the inclusion of the continuous space dimension-

ality, which allows the system to exhibit cooperative activation properties in both time
and space by reacting to spatio-temporal input patterns with ordered oscillatory states
in space and time. Speci cally, we observed: (1) emergent local oscillatory assem-
blies, (2) intrinsic synchronization/desynchronization properties and (3) ordered spatial
distributions of coherence states that act as a 5exible medium to establish feature as-
sociation. A detailed analysis of the coherent rhythmic oscillations obtained through
simulations evidenced how the model is capable of reproducing, with verisimilitude,
the macroscopic behaviour observed in real cortical networks.
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4.1. Continuous neurodynamics and reaction-di:usion systems

Large-scale cortical dynamics occurs through successive activations of neuronal as-
semblies that de ne a new state or a new set of states for the cortical network. Such
states are often called macrostates [28] and represent widespread coarse-grained ex-
pressions for local cooperative activities. Several models have been proposed in the
literature to account for the macroscopic behaviour of cortical networks, of both the
lumped and unlumped types [7,29,73,95,97–99]. Considering the huge number of cells
found in layered cortical areas, neuronal activation is usually de ned over spatially con-
tinuous domains (neural  elds), like continuous distributions of neurons and synapses
where each point in space corresponds to a neural population [65]. Formally, the dy-
namics of each layer is described by integro-di4erential ordinary equations:

�
d
dt

e(x; t) =−e(x; t) + bF
(∫

k(x − x′)e(x′; t) dx′
)
+ s(x; t); (3)

where the integral kernel k(x − x′) is a smooth function that replaces the synaptic
interconnection matrix, and the position variable x replaces the indices of discrete
models. In this way, metric relations apply, and it becomes possible to model the
geometrical properties, such as spatial nearness and topology, that characterize the
rich anatomical structure of cortical areas (e.g., maps, columns, dendritic and axonal
arborizations, cell density, etc.) [49,50,66].
If one introduces a di4usive coupling into a neurodynamical architecture, additional

local interactions take place, modelled by partial derivatives, rather than by integral
kernels [100]:

�
@
@t

e(x; t) =−e(x; t) + D
@2

@x2
e(x; t) + bF

(∫
k ′(x − x′)e(x′; t) dx′

)

+ s(x; t): (4)

Local interconnections represented by the term D(@2=@x2)e(x; t) provide a gradual spread
of the variations of e(x; t) along x, and simulate the continuity constraint of the neu-
ral  eld. In this way, one can sharply reduce the extent of synaptic interconnections
required to obtain smooth activation  elds. Indeed, by comparing in the Fourier do-
main the stationary solutions of the linearized versions of Eqs. (3) and (4), we have
(upper-case letters denote Fourier transforms and ! is the spatial frequency):

E(!) =
1

1− bK(!)
S(!) (5)

and

E(!) =
H0(!)

1− bKeq(!)
S(!); (6)

where H0(!)=1=(1+D!2) plays the role of an averaging (i.e., smoothing) feedforward
kernel (cf. a receptive  eld), and Keq(!)=K ′(!)=(1+D!2) is an equivalent feedback
interaction kernel. The same e4ective intracortical coupling, in comparison with the case
where no di4usion is incorporated, can be obtained by choosing K ′(!)=(1+D!2)K(!).
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The factor (1+D!2) acts as a bandwidth extender; therefore, the corresponding kernel
k ′(x), back in the space domain, will turn out to be shrunk with respect to k(x).
Accordingly, the point long-range recurrent interactions introduced into Eq. (1) yield
an extended equivalent spatial coupling whose size depends on D.
Reaction-di4usion systems [24,42,57,84,87], like the one adopted in this paper, gen-

eralize the approach to providing a phenomenological explanation for the mechanisms
responsible for cortical processing in terms of interacting neuronal populations. Indeed,
it has been well-known for a long time that, on a macroscopic scale (i.e., phenomeno-
logically), cortical activation states can be modelled by considering the dynamics of
two non-linearly coupled populations of excitatory and inhibitory neurons [96], spatially
organized into stereotyped modules (cf. the canonical cortical microcircuit [17]). From
this perspective, reaction-di4usion systems, regarded as “an assembly of a large num-
ber of identical local systems which are coupled (i.e., di4usion coupled) to each other
[58],” represent a suitable paradigm to model the processes occurring across cortical
networks. The di4usive coupling is representative of the cooperative actions that take
place among single cortical modules. More speci cally, reaction-di4usion systems are
natural candidates for modelling cortical phenomenological processes associated with
sensory information processing, as their di4usion components allow a weighted aver-
aging of the input signal over a region of a certain extent (i.e., the receptive  eld),
thus realizing a reduction in the complexity of the signal, while the non-linear re-
action components provide a 5exible medium through which all kinds of excitatory
and inhibitory behaviours can be modelled. A reaction-di4usion system inherits its ki-
netic properties from the associate kinetic system [27] (obtained by eliminating all
spatial interactions), which, in our case, coincides with KOonig and Schillen oscillator
[52]. Hence, the oscillatory states of the KOonig and Schillen’s model represent the
space-independent solutions of our system. The presence of di4usion propagates such
local oscillations to the surrounding region, thus introducing the cooperative behaviour
in space.

4.2. Comparison with other models

The conceptual framework on which this paper is based, with its theoretical and
modeling development, has been present in the literature for a long time, through
several studies aimed at exploring the origin of oscillations in various parts of the
brain and devoted to analyzing their computational role from an information-processing
perspective. In general, we can distinguish between two (complementary) categories:
(i) spatially discrete neural network models and (ii) spatially continuous population
models.
In the  rst category, di4erent choices for the basic unit of the network can be

made, corresponding to di4erent levels of abstraction of the neuronal dynamics: such
choices range from spiking models [34,35,45,64], excitatory-inhibitory population mod-
els [41,52,75,86,91], to phase models [5,37,43,56,72,82]; for a review, see [83]. In all
these examples, the spatial character of the model, based on nodes interacting discretely
with one another, is discussed considering the in5uence of di4erent types of couplings
and choices of parameters on the synchronous oscillatory behaviour of the network. As
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these approaches lack biological empirical details, they fail to reproduce with accuracy
the macroscopically observed cortical activity, and provide no clear indication as to
the model scale one is considering.
In the second category, i.e., the spatially continuous population models, the idea

prevails that the cortical tissue has to be treated as a spatial continuum. Variables and
parameters of the model are introduced according to the scale one adopts to describe
the empirical phenomena addressed: [96], which could be considered as a “cut across”
model between the two categories, [28,59,61,69,89,98,101]. Such continuum- eld de-
scriptions of the activity on the cortical tissue are complementary to the more traditional
neural network models, as they describe more accurately the behaviour of large-scale
cortical “observables” by means of mean- eld variables and parameters, even though
at the cost of higher model complexity (i.e., a large set of integro-di4erential or par-
tial derivative equations and a huge number of parameters). Our model combines the
structural simplicity of discrete models with a  eld description to take into account
that neurons are immersed in a conductive medium (vascular, glial and extracellular
environment), which constitutes approximately 20–30% of the cortical mass [48] and
is likely to signi cantly a4ect the dynamical properties of the incorporated neurons.
The model’s essentiality allows us to point out the basic architectural principles un-

derlying the observed variety of behaviours. Although it is true that the discretized
model described by Eq. (1) corresponds to a network of oscillators coupled with the
nearest neighbours (cf. Wang’s scalar di4usive coupling in [10]) the di4usive parameter
D, representing the square of the di4usion length, better describes the character and the
spatial extent of the coupling. Speci c considerations should be made on the similarities
and di4erences between our model and the work by Wang and colleagues. In particular,
in [10], they presented a 2-D model of visual cortex that includes local excitation and
global inhibition for synchronization and desynchronization processes, respectively. The
local character of the di4usive coupling used in our model to control the synchroniza-
tion of the oscillatory activity ensures the preservation of the geometrical relationships
among oscillators, important for perception grouping, and prevents the network from
incurring indiscriminate synchronization. As in Wang, our simulations demonstrate that
the network (system) is capable of producing phase-locking of stimulus-driven oscilla-
tions, without resorting to a global phase coordinator [47], all-to-all connections [82],
or  xed delay relations among oscillators [52] (see also [44]). Instead of exploiting
a global inhibition (cf. [45,93]), to desynchronize the entire network we resort to a
lateral inhibitory coupling at a distance ±d. This long-range recurrent inhibition does
not generate a global desynchronization, since it does not prevent an accidental phase
alignment of distant parts of the system. To statistically reduce this undesirable e4ect
and to facilitate the desynchronization process, an additional input noise term can be
introduced into the model (cf. [52,86]). Simulations using such a noise input (data not
shown) validated this statement.
A further di4erence between our model and Wang’s concerns the ability of our model

to account for a spatial cooperative behaviour in sparking system oscillations. Usually,
local excitatory (e.g., di4usive) couplings between discrete oscillators are introduced
to provide synchronization processes among units that already oscillate in response to
proper sustained external inputs. In this paper, we have pointed out that the origin
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of spatially extensive oscillatory assemblies is due to the spatial cooperative reaction
of the di4usive layer to rapid successive activations at multiple cortical sites within a
contiguous spatial region. The stochastic nature of the input signals used to stimulate
the excitable medium mimics the variability of synaptic events in response to volleys
of excitatory a4erent activity (see, for instance, [77,80]).
The model presented in this paper has been developed to reproduce, to a certain

degree of realism, several experimental results on �-oscillations observed in visual
cortex, rather than address a speci c kind of application (e.g., image segmentation and
perceptual grouping [11,12], auditory scene analysis and speech recognition [79,92],
etc.). From this perspective, the segmentation capabilities shown in Fig. 5 refer to
an example of simple feature association reproducible on a 1-D layer. This result
suggests that a proper evolution of the proposed model could be pro tably exploited to
develop perceptual grouping mechanisms based on several and more complex features.
Speci cally, applications in visual motion segmentation and auditory scene analysis
could well suit the joint spatio-temporal synchronization/desynchronization properties
of our networks.

4.3. Towards coupled oscillatory maps

The advantages associated with the spatial properties of our  eld model can be better
understood if one considers, in perspective, its 2-D extension. In this case, we should
assume a 2-D distribution of excitatory-inhibitory oscillators, so we could receive, for
each spatial position, an external input through overlapping receptive  elds, whose ori-
entations vary continuously in space according to an orientation map (e.g., [6]). In this
way, the  eld parameters D, d and b, as well as the long-range excitatory connections,
can be used to control correlated/anti-correlated states with periods comparable to the
hypercolumn width, thus becoming the means for synchronizing columns with similar
orientations and for desynchronizing those with orthogonal orientations. More gener-
ally, in the 2-D case, it would be possible to obtain distributions of coherence that
are oriented in preferred directions. The resulting anisotropies of the association  elds
in the visual space could be analysed in relation to the degree of coaxiality of the
receptive  elds of the orientation selective cells, pointing out their possible perceptual
role, e.g., in feature binding at elongated object contours [8,13,26,31,50,71].
Due to the high computational load of the 2-D simulations, we deferred a detailed

analysis of the 2-D properties of these coupled oscillatory maps to a future work.
However, preliminary results have evidenced that the spatio-temporal characteristics
of the resulting model local  eld potentials can be used to solve segmentation prob-
lems, yielding a global perception of edges separating one region from another and
determining regions on the basis of texture continuity.
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